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Compressible plume dynamics and stability
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This paper presents a numerical study of the dynamics and stability of two-
dimensional thermal plumes in a significantly stratified layer. Motivated by stellar
envelope convection in which radiative cooling at the star’s photosphere drives vigor-
ous downflows, we examine cool plumes descending through an adiabatically stratified
layer of increasing density with depth. Such flows are inaccessible by laboratory ex-
periments, yet are important to the understanding of heat and momentum transport,
magnetic field generation, and acoustic excitation in stars like the Sun. We find that
the structure of thermal plumes in a stratified compressible medium is significantly
different from that in an incompressible one, with pressure perturbations playing
an important dynamical role. Additionally, we find that the plumes are subject to
vigorous secondary instabilities even in a quiescent background medium. While the
flows studied are not fully turbulent but transitional, the nature of the compressive
instabilities and their influence on subsequent flow evolution suggests that advective
detrainment of fluid from the plume region results. Simplified plume models assuming
a hydrostatic pressure distribution and velocity-proportional entrainment may thus
be inappropriate in this context.

1. Introduction
Thermal plume generation and interaction is important to the the dynamics of and

heat transport by thermal convection in a variety of settings (cf. Turner 1986; Zocchi,
Moses & Libchaber 1990). The work presented here is most fundamentally motivated
by studies of compressible convection. Those focusing specifically on compressibility
and employing an ideal-gas equation of state (Graham 1977; Hurlburt, Toomre &
Massaguer 1984; Cattaneo et al. 1991) have clearly demonstrated the importance
of flow asymmetry (fast narrow downdraughts and broader gentler upflows) to the
dynamics and heat transport properties of thermal convection in a stratified medium.
The asymmetry arises because positive pressure perturbations in both the upflow and
downflow regions contribute positively to density perturbations, enhancing buoyancy
driving in the downflows but contributing to buoyancy braking of the upflows
(Massaguer & Zahn 1980; Hurlburt et al. 1984). Mean stratification of the fluid
necessitates compression of the downflowing and expansion and overturning of the
upflowing material. Other work has looked at compressible convection in non-ideal
ionizing gases (Stein & Nordlund 1989; Rast et al. 1993; Rast & Toomre 1993a, b), a
setting appropriate to stellar envelopes. In those studies, strong radiative cooling and
diffusive boundary layer instabilities were found to generate particularly vigorous new
downflow plumes whose strength at depth is maintained by the increased specific heat
of the fluid upon partial ionization. This apparent propensity toward downflow plumes
in compressible convective flows has inspired a number of authors to consider them



126 M. P. Rast

as an essential ingredient in understanding the thermal stratification of the overshoot
region below the solar convection zone and possible magnetic dynamo mechanisms
operating there (e.g. Schmitt, Rosner & Bohn 1984; Simon & Weiss 1991; Zahn
1991; Parker 1993; Charbonneau & MacGregor 1997). But do the downflow plumes
generated at the solar surface actually descend through the entire depth of the
solar convection zone and penetrate below? Previous authors (Schmitt et al. 1984;
Simon & Weiss 1991; Rieutord & Zahn 1995) have answered this in the affirmative
based on simplified stratified but incompressible (small pressure fluctuations) plume
models incorporating velocity-proportional entrainment. Here we examine, via direct
numerical simulation, the dynamics and stability of fully compressible downflow
plumes in a significantly stratified medium, and find that such plumes are subject to
vigorous secondary instabilities leading to plume disruption. Pressure fluctuations play
an important dynamical role, initiating the detachment of vortex pairs which leave
the plume region. While the flows we study are not fully turbulent but transitional,
the nature of these instabilities and the subsequent evolution of the flow suggest
that detrainment rather than entrainment of fluid from the plume region results.
This is quite contrary to what is assumed in simplified plume models, and is a
direct consequence of compression and isolation of shed vortex pairs rather than
their expansion and interaction as observed in incompressible or upward-directed
compressible plume flows.

The remainder of this paper is organized as follows. The model is formulated in
the next section, including a description of the polytropic background state, boundary
conditions, and numerical method. In § 3 we describe the single downflow plume
solutions obtained and discuss their dynamics and stability. Emphasis is placed on
the onset of instability in a quiescent background. In § 4 we contrast these results
with solutions involving multiple plume interactions and upward directed plumes, and
discuss possible implications for more fully developed turbulent flows. We conclude
in § 5 by briefly connecting the work back to some of its astrophysical motivations.

2. Model
We consider thermal plumes penetrating an adiabatically stratified two-dimensional

plane-parallel layer of ideal gas. The fluid is confined between stress free and im-
penetrable horizontal boundaries and within a horizontally periodic domain. The
temperature T is held constant on the upper and lower boundaries. The unperturbed
atmosphere is polytropic, meaning that the pressure P and density ρ are related by

d lnP

d ln ρ
=
m+ 1

m
, (1)

with the polytropic index m constant throughout (cf. Cox & Giuli 1968). Equation (1),
along with hydrostatic balance, constant gravity, and an ideal gas equation of state,
implies a linear temperature profile with depth z, and density and pressure which
scale with temperature as m and m+ 1 respectively (figure 1a). Additionally, adiabatic
stratification and thus neutral convective stability in a monatomic ideal gas requires
m = 1.5. Thus the structure of the unperturbed atmosphere is determined solely by
the temperature gradient θ.

Convenient measures of density and pressure stratification are the local scale
heights, Hρ and HP respectively. In a polytropic atmosphere these are increasing
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Figure 1. Stratification of the unperturbed atmosphere: (a) temperature T (dotted line), density ρ
(dashed curve) and pressure P (solid curve) and (b) number of density scale heights Nρ (dashed
curve) and pressure scale heights NP (solid curve) spanned as a function of depth z.

linear functions of temperature, and the total number of scale heights spanned,

Nρ =

∫ z

0

H−1
ρ dz =

∫ z

0

1

ρ

dρ

dz
dz = m ln(T ) (2)

and

NP =

∫ z

0

H−1
P dz =

∫ z

0

1

P

dP

dz
dz = (m+ 1) ln(T ), (3)

increases most rapidly with depth near the top and more slowly near the bottom
of the stratified layer (figure 1b). In this paper we considered atmospheres up to 7
pressure (or 4 density) scale heights deep. The pressure and density ratios across such
layers are correspondingly 1024 and 64.

To the above described quiescent polytropic atmosphere we apply a Gaussian tem-
perature perturbation. The perturbation is generally cool and centred along the upper
boundary, although warm perturbations at the bottom and multiple perturbations
are briefly considered as well. Density along the boundary is chosen initially to satisfy
pressure equilibrium, but subsequently evolves unfettered. Motions ensue within the
domain as the thermal anomaly diffusively spreads inward from the boundary, in-
ducing buoyancy forces and horizontal pressure gradients. The motions are of course
governed by the equations of mass, momentum, and energy conservation, and we
express these in a non-dimensional form. Temperature and density are scaled by the
unperturbed values T0 and ρ0 at the top of the domain. Length is measured in units of
the full width at half the maximum of the applied Gaussian temperature perturbation
d, and the unit of time is taken to be the isothermal sound travel time over that
distance at the unperturbed upper boundary temperature d/(RT0)

1/2. We define two
dimensionless numbers: a sound speed Reynolds number,

Re =
ρ0d(RT0)

1/2

µ
, (4)

and a Prandtl number

Pr =
µR

k
. (5)

In the Prandtl number so defined the gas constant R replaces the usual occurrence of
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the specific heat Cv for ease of generalization to non-ideal fluids in which Cv is not
constant. Since this study is confined to ideal gases only, the true Prandtl number, the
ratio of thermal to viscous diffusion times, is simply a constant multiple (Cv/R = 3/2)
of Pr. Similarly, the isothermal sound speed was chosen in the definition of the
Reynolds number (4) as it is independent of the specific heat, whereas the adiabatic
sound speed given by (γRT )1/2 depends on the ratio γ = Cp/Cv (equal to 5/3 in an
ideal gas).

With these scalings and definitions we write the non-dimensional equations as

∂ρ

∂t
= −∂(ρuk)

∂xk
, (6)

∂
(
ρuj
)

∂t
= −

∂
(
ρujuk

)
∂xk

− ∂P

∂xj
+

1

Re

[
∂2uj

∂xk∂xk
+

1

3

∂

∂xj

(
∂uk

∂xk

)]
+K2ρδj3, (7)

and

∂T

∂t
= −uk

∂T

∂xk
− T

Cv

∂uk

∂xk
+

1

Re Pr

1

ρCv

∂2T

∂xj∂xj

+
1

Re

1

ρCv

[(
∂uk

∂xj
+
∂uj

∂xk

)
∂uj

∂xk
− 2

3

(
∂uk

∂xk

)2]
, (8)

where K2 = dg/RT0 = (m + 1)θ (equal to the ratio of d/Hp at the top of the layer)
measures gravity and P is given by the ideal gas law P = ρT . Note that both the
dynamic viscosity µ and thermal conductivity k are taken as constants, and that the
bulk viscosity is assumed zero. This means of course that the kinematic viscosity
ν = µ/ρ and the thermal diffusivity κ = k/ρCv vary with fluid density, decreasing
with increasing density and therefore depth. Also note that, since depth z is measured
downward in the direction of gravity, downward velocities are positive.

Two-dimensional initial value solutions to the above nonlinear equations were
computed using fully explicit second-order finite difference techniques, centred in the
interior and one-sided on the boundaries. Such second-order differencing lends itself
to rapid communications on the parallel architecture of the Connection Machine
CM-5 used for these studies, and calculations of very high spatial resolution on
10242, 1024×2048, and 14722 grids were possible. The resolution was enhanced in the
plume region by an arc-tangent transformation from the regular computational grid
to an irregular sampling in physical space. Such grid stretching permitted domain
sizes of up to 60d squared while maintaining fine gridding in the flow region. The large
domains minimize lateral boundary influences and allowed study of plume dynamics
in an effectively infinite half-space (computations were terminated before the plume
impacted the opposite boundary from its origin). The resolution so obtained by this
combination of fine and non-uniform gridding permitted over 30 grid points per
Taylor microscale in the least viscous most evolved solutions, and many more in less
evolved or more viscous ones. The equations were time-advanced using an Adams–
Bashforth scheme (Richtmyer & Morton 1967), the weak unconditional instability
inherent in such a scheme posing no difficulty due to the initial value nature of
the problem. Resolution checks on both uniform and non-uniform grids were made,
verifying at least internal consistency. Moreover, the code is a direct adaptation of a
previous compressible convection code, with that code having been checked both for
linear growth and against a pseudospectral calculation (cf. Rast 1991, 1992).
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Case Re Pr Pc ∆x (×102) ∆z (×102) λ Rλ Fh

A 75 0.13̄ 10.0 1.20–1.78 3.25–16.2 0.427 47.9 0.368
B1* 100 0.1 10.0 1.20–1.78 3.25–16.2 0.393 60.4 0.383
B2 100 0.5 50.0 1.20–1.78 3.25–16.2 0.310 35.3 0.146
B3 100 1.0 100.0 1.20–1.78 3.25–16.2 0.302 29.4 0.093

C 125 0.08 10.0 1.20–1.78 3.25–16.2 0.371 73.6 0.393
D* 150 0.06̄ 10.0 0.798–1.67 1.08–5.41 0.348 91.1 0.432
E* 200 0.05 10.0 0.798–1.67 1.08–5.41 0.324 116.0 0.444
F1* 250 0.04 10.0 0.798–1.67 1.08–5.41 0.310 141.0 0.454

F2 250 0.01 2.5 0.798–1.67 1.08–5.41 0.486 228.0 0.696
F3 250 0.1 25.0 0.798–1.67 1.08–5.41 0.244 99.8 0.283
F4 250 1.0 250.0 0.798–1.67 1.08–5.41 0.188 47.2 0.063
F5 250 5.0 1250.0 0.798–1.67 1.08–5.41 0.199 30.4 0.021
F6 250 10.0 2500.0 0.277–1.50 1.35 0.200 28.5 0.016

Table 1. Parameters of the numerical experiments. Those experiments marked with an asterisk
were conducted both with quiescent and perturbed initial conditions.

3. Single-plume structure, dynamics, and stability
In this section we present the results of three series of numerical experiments

summarized in table 1. The studies were designed to explore variations in plume
dynamics with Reynolds and Prandtl number while holding remaining parameters
such as background stratification (θ = 0.25) and applied temperature perturbation
(minimum temperature along the upper boundary 0.3T0) fixed. Note that Re quoted
in table 1 is a scaling parameter based on fluid properties at the top of the domain.
Due to fluid stratification, values of this parameter would exceed those quoted by a
factor of several hundred if it were based on fluid properties in the lower portion of
the domain. The actual vigour of the resulting flows is thus poorly represented by the
numerical value of Re, and the microscale Reynolds number Rλ determined from the
solutions (see § 3.1) is quoted in table 1 as well.

Resolution requirements of the simulations listed in table 1 varied: Cases A–C
were computed on a 1024 × 1024 stretched grid covering a 60 × 60 domain, while
Cases D–F5 utilized a 1024× 2048 stretched grid over a 40× 40 domain. The highest
Prandtl number case, F6, was computed within a restricted domain of 20 × 20 on a
1472× 1472 stretched grid. Minium and maximum values of the grid spacing ∆x and
∆z within 3 units either side of the plume centre are given in table 1 to indicate the
actual resolution achieved by non-uniform gridding. Note that the plume occupies
only the central region of even this subdomain (see figure 3) where ∆x is the smallest
and thus the resolution is the finest.

3.1. Parameters

The numerical experiments conducted comprise three series: Series A consisting of
A, B1, C–F1, Series B of B1–B3, and Series F of F1–F6. For Series A the product of
the Prandtl and Reynolds numbers, the Péclet number Pc, was held constant while
varying both Re and Pr. This effectively adjusts the dynamic viscosity of the fluid
while holding the thermal conductivity constant. Series B and F allow the Péclet
number to vary with the Prandtl number while holding Re constant at two different
values, 100 and 250 respectively. Series A consists entirely of low Prandtl number
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Figure 2. (a) The enthalpy flux measured at a depth of one density scale height as a function of
Péclet number Pc, and (b) the scaling of the microscale Reynolds number Rλ with Reynolds Re and
Prandtl Pr numbers. Low Prandtl number cases and high Prandtl number cases are shown with
filled circles and squares respectively.

solutions, those of most relevance to astrophysical convection, while B and F include
some higher Prandtl number comparisons.

The vigour of each of the solutions is indicated by entries in the last two columns
of table 1. While all the experiments are initially adiabatic in the interior and are
subject to the same applied temperature perturbation on the boundary, those of lowest
Péclet number allow greatest surface cooling at the plume site. Fluid moves out of a
thermal boundary layer of thickness δ on a buoyancy time scale t2b ∼ δρ/(ρ′g), where
primed quantities are fluctuations about the horizontal mean. Diffusive loss of heat
results in temperature fluctuations of magnitude T ′/T ∼ tb/tκ, where tκ = δ2/κ is the
characteristic thermal diffusion time. As the Péclet number increases (κ decreases) the
thermal diffusion time increases relative to the buoyancy time. The fluid moves out
of the thermal boundary layer having cooled only little, and the resultant plumes are
weaker and narrower than they are at lower values of Pc. The enthalpy flux (table 1,
column 9),

Fh = −5

2

∫
ρwT ′dx , (9)

defined to be positive when directed upward (as in a cool downflow plume) and
measured at a depth of one density scale height, reflects this, scaling empirically as
Fh ∼ Pc−0.59. This is illustrated by figure 2(a), which also suggests that the scaling
at low Prandtl numbers (values plotted with filled circles) may differ slightly from
that at the higher ones (values plotted with filled squares). Note that the enthalpy
flux carried by a thermal plume in a stratified medium is not constant with depth.
For adiabatic motions T ′/T remains constant. Thus, as the fluid is gravitationally
accelerated downward the magnitudes of both T ′ and ρw increase with depth, and
consequently so does Fh. In these simulations the motions are not adiabatic. Formed
on a diffusive scale, the plumes suffer horizontal losses even at very low values
of κ. The losses are most significant in the upper layers of the domain where the
temperature gradients are sharpest and the density is lowest (thus the diffusivity is
highest). Despite this Fh increases with depth, albeit more slowly than in an adiabatic
flow, with gravitational acceleration of the fluid more than compensating for the
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reduction in temperature perturbation amplitude. Also note that the flux carried by
the plumes in these simulations in all cases far exceeds that carried conductively by
the adiabatic background (given by θ/Pc). Additionally, variation of the mean state
due to plume formation is small because of the large domain sizes considered. Thus
the plumes studied here should be considered strong, isolated, and embedded in an
adiabatic domain.

Another measure of plume vigour is the microscale Reynolds number, Rλ = umλ/ν
(table 1, column 8). Here λ = (〈u2〉/〈ω2〉)1/2 measures the characteristic horizontal
extent of the shear at each depth (ω being the only surviving component of the
vorticity in two dimensions and the angled brackets indicating horizontal mean
values), the characteristic velocity of the flow um is taken to be the flow speed
(u2 + w2)1/2 averaged over the shear region of size λ in the plume centre, and the
kinematic viscosity ν varies with depth as the background polytropic density. The
values of λ and Rλ quoted in table 1 are measured at a depth of one density scale
height immediately before the onset of sinuous instability anywhere along the stem.
As illustrated by figure 2(b), Rλ scales empirically as

Rλ ∼ Re0.58Pr−0.33 , (10)

and again there is an indication that the scaling may differ between the higher
(plotted as filled squares) and lower (plotted as filled circles) Prandtl number cases.
Additionally, there is a general increase in Rλ with depth at all Prandtl numbers and
the scaling with Re and Pr given by (10) holds independent of depth for low Prandtl
number stem flow (this depth independence does not hold for the high Pr cases).
Note that the values of Rλ cited in table 1 and plotted in figure 2(b) are representative
of the stem flow before instability. Significantly higher values are characteristic of
the deeper cap structure and the intricate dynamics which develop subsequent to the
onset of instability.

3.2. Early flow development at low and high Prandtl numbers

Early stages in the development of a typical low Prandtl number solution (Case B1)
are illustrated in figure 3 with a series of images of the horizontal vorticity. Each
frame encompasses about 1/10th of the horizontal and the full vertical extent of the
computational domain. In the early stages of development, the flow shares the general
cap and stem morphology common to laminar starting plumes in incompressible
media (e.g. Moses, Zocchi, & Libchaber 1993 and references therein). Subsequently
the stem is subject to a symmetric pinch-like instability which detaches the leading
vortex pair. This type of instability is not seen in Boussinesq thermal plumes or, as
will be seen in § 4, in fully compressible upflowing plumes. Great care was taken in
these calculations to ensure very low levels of numerical noise. Under such conditions
the symmetric pinch-like instability generally occurs twice before small differences
between the strengths of the left-hand and right-hand vortices grow sufficiently to
destabilize the stem in a sinuous mode (not illustrated by figure 3 but illustrated and
discussed further in § 3.5). Growth of the sinuous mode can be facilitated by random
temperature perturbations in the initial conditions or multiple plume interactions.
Either of these serves to destabilizes the delicate balance unique to precisely equal-
magnitude cap vortices. Those experiments marked with an asterisk in table 1 were
conducted twice, once with quiescent initial conditions and once with added random
background temperature perturbations of amplitude 10−3. Those experiments in
table 1 without an asterisk were initiated only with the quiescent state. We discuss the
solutions resulting from quiescent initial conditions further in this and the following
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Figure 3. A series of horizontal vorticity images (light and dark being oppositely signed vorticity)
for a typical low Prandtl number solution (Case B1). The full vertical extent and 1/10 the horizontal
extent (6 units) of the computational domain is shown in each image.

two sections, leaving discussion of the sinuous instability mode and the more evolved
turbulent flows for §§ 3.5 and 4.

Early development of a high Prandtl number solution (Case F6) is illustrated in
figure 4 which displays temperature fluctuations about the horizontal mean. Here a
very narrow plume develops out of the coolest central portion of the applied Gaussian
perturbation. The thermal diffusivity in this case is greatly reduced (Pc = 2500),
and persistent temperature structures form within the vortex cap. Flow dynamics
are dominated by local temperature variations, with animated sequences of images
showing the cool fluid descending down the plume centre, returning along the outside
of the head, then stagnating at the rear of the cap, before finally descending a
second time to form the intricate windings apparent in figure 4. Persistent positive
temperature fluctuations (light regions in figure 4) develop early as a result of
compressional heating. This relatively warm and buoyant fluid descends less rapidly
than the cool fluid surrounding it and ultimately comes to occupy the central portion
of the loosely wound vortex pair. The high spatial resolution required to resolve
these intricate temperature variations and fluid motions places severe constraints on
the total spatial extent of the experiment. Only the shallow domain 20 units deep
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Figure 4. A series of temperature perturbation images (light indicating temperatures above and
dark temperatures below the horizontal mean) for a high Prandtl number solution (Case F6). The
full vertical extent and 1/5 the horizontal extent (4 units) of the computational domain is shown
in each image. Note that in this case the plume emerges from only the very central portion of the
applied Gaussian temperature perturbation.

illustrated in figure 4 could be considered with adequate resolution for Pr = 10.0.
As a consequence of both this limited depth and the quiescent initial conditions, the
secondary instabilities which dominate the later stages of the deep low Prandtl number
simulations did not have time to develop in Case F6 before the bottom of the domain
was encountered by the flow. Note however that after descent to a comparable depth
the plume in the low Prandtl number solution of figure 3 is also only just beginning
to show signs of the pinch instability. Furthermore, all solutions computed in deeper
domains, independent of Prandtl number, exhibited vigorous secondary instabilities.
This is true even of Case F5 with Pr = 5 which displayed early evolution similar
to that of Case F6 but subsequently exhibited head consolidation and then pinch
and sinuous instability in the lower half of the domain. We thus expect that the
pinch and sinuous flow instabilities we examine in detail in this paper occur in all
compressible downflow plumes, independent of Pr, given a sufficiently deep and
stratified background.

3.3. Stem flow before instability onset

When considered in detail the laminar stem flow exhibited by these compressible
starting plumes is quite unique. Figure 5 plots horizontal cross-sections of the stem
flow velocity and temperature fluctuations at three depths in Case D: Nρ = 0.5,
Nρ = 1.0, and Nρ = 2.5 corresponding to z = 1.57, z = 3.80, and z = 17.2 respectively.
The flow, particularly in the uppermost layers, exhibits the curious property that the
upflow velocity peaks sharply immediately adjacent to the downflow plume. This
is in contrast to motion exhibited by either compressible or incompressible cellular
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Figure 5. Horizontal cuts of (a) vertical velocity −w (upflow positive) and (b) temperature pertur-
bations T ′ at three depths in Case D: Nρ = 0.5 (solid curve), Nρ = 1 (dashed curve), and Nρ = 2.5
(dotted curve) corresponding to z = 1.57, z = 3.80, and z = 17.2 respectively. All cuts sample nearly
steady plume stem flow, and in both figures only one quarter of the full horizontal extent of the
computational domain is shown.

Rayleigh–Bénard convection in which predominantly horizontal motions are found
adjacent to the site of downflow. In those settings bottom heating plays an important
dynamical role. Here the influence of the lower boundary is absent or extremely weak,
and the upflows are driven locally in response to buoyancy forces and large pressure
gradients induced in the vicinity of the downflow plume. Figure 6 plots the pressure
perturbations and the associated Mach number of the flow in the upper layers of the
fluid. Pressure perturbations are positive in the central core of the plume where the
flow is convergent, the horizontal velocity vanishes, and the vertical Mach number
peaks. Adjacent to the core flow, high Mach number horizontal flow and strong
negative pressure fluctuations occur. It is in response to the direct pressure gradients
and induced buoyancy forces in this outer region that the fluid is accelerated upward
and inward before descending down the plume stem.

Figure 7 plots the plume stem diameter d as a function of depth for the experiments
comprising Series A before the onset of sinuous instability. The diameter is measured
as the distance between oppositely signed vorticity maxima on either side of the
plume. (Note that the plumes are strictly two-dimensional and not axisymmetric.)
Thick vertical bars in the figure are composed of individual data points, and the
jumps in value with depth reflect twice the horizontal grid spacing in the domain
(the positions of the vorticity maxima each shift discretely by one grid point as
the plume diameter changes). Thin solid curves in figure 7 plot the best power-law



Compressible plume dynamics and stability 135

0.05

0

–0.05

–0.10

–0.15

4
3

2
1

0 15

20

25

x
z

P ′
©Pª

(a)

min = –0.11

max = 0.03

0.5

0.4

0.2

0.1

0
4

3
2

1
0 15

20

25

x
z

M

(b)

maxw = 0.48

maxu = 0.36

0.3

Figure 6. Perspective views with depth z and horizontal position x of (a) relative pressure fluc-
tuations P ′/〈P 〉 and (b) flow Mach number M in Case D. Only the central 1/4 and top 1/8 of
the computational domain is shown. Horizontal resolution has been reduced by a factor of six for
graphic clarity. Also indicated in (a) are the maximum and minimum values of P ′/〈P 〉 and in (b)
the maximum vertical and horizontal flow Mach numbers.
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Figure 7. Plume stem diameter d, measured as the distance between peak oppositely signed vorticity,
as a function of depth z for six experiments of differing fluid viscosity (Series A). Thick vertical
bars are composed of individual data points, discontinuities with depth reflect twice the horizontal
grid spacing. Thin solid curves plot the best power-law fit to the data and dashed curves indicate
scaling-theory behaviour, which in the absence of thermal diffusion predicts d ∼ z−1/2 (dash-dot
curve).

fits to the data. In the topmost scale height the plume stem diameter increases,
with the maximum diameter attained scaling empirically as Re−1/2. This increase is
opposite to the decrease in diameter above one scale height predicted by stratified
but incompressible plume models which assume a hydrostatic pressure distribution
(Rieutord & Zahn 1995). It is here the result of the large amplitude dynamical
pressure fluctuations in the upper portions of the domain which induce entrainment
of fluid into the plume stem.

Below the uppermost scale height dynamical pressure fluctuations in the laminar
stem flow are small, and the flow properties vary in response to the mean stratification
through which the plume descends. Vertical force balance then ensures a decrease in
plume diameter with depth, as it would in the simplified hydrostatic plume models
if there were no entrainment (in such models an entrainment rate proportional to
the mean vertical velocity is generally assumed). The decrease in plume diameter in
these simulations can be understood as follows. The primary vertical force balance
for the low Prandtl number nearly steady plume stem flows is between buoyancy and
horizontal viscous dissipation in the stem core and between buoyancy and horizontal
advection immediately outside the core. At the location of vorticity amplitude maxi-
mum, which determines our measure of plume diameter, all three force terms are of
comparable magnitude,

ρu
∂w

∂x
∼ ρ′g ∼ 1

Re

∂2w

∂x2
. (11)

This implies a plume stem diameter which scales as

d4 ∼ z

ρRe2ρ′g
. (12)

For an adiabatic descent of fluid and small pressure fluctuations ρ′/ρ is approximately
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constant, implying that, since ρ ∼ z3/2 in the background, the plume stem diameter
should scale with depth as

d ∼ z−1/2. (13)

That scaling is plotted in figure 7 with a dash-dot line and is steeper than the
results found for the numerical experiments. As discussed previously, however, the
actual thermodynamics of the fluid descent in these experiments is not adiabatic. The
plumes suffer horizontal heat losses even at very low values of thermal conductivity.
The scaling of this loss with depth cannot be determined directly from the energy
equation. The primary energy balance is between the vertical advection of cool
fluid and its heating by compression. Thermal diffusion serves to balance the small
remaining difference. A correction to the diameter can however be made empirically
by measuring the scaling of diffusive heat losses with depth (found to be about z−1/3).
From this, the scaling of T ′ and thus ρ′ in (12) can be determined. The dashed lines
in figure 7 indicate how well the scaling theory then fits the data. Before the onset of
instability and if corrected for broadening by thermal diffusion, the stem flows below
one density scale height balance buoyant acceleration with horizontal advection and
viscous dissipation.

3.4. Pinch instability and vortex cap structure

In the formation and detachment of the vortex cap structure at the head of these
starting plumes, as in the uppermost scale height of the stem flow, dynamical pressure
fluctuations play an important role. Figure 8 traces cap evolution in Case F1 by
following the motion as the plume descends. The first column displays contours of
vorticity, while the second and third show density and pressure perturbations about
the mean state. Positive values are indicated with solid and negative values with
dashed curves. The plume emerges from the boundary layer and quickly forms the
cap and stem structure (figure 8a) familiar from other settings (cf. Moses et al. 1993
and references therein). Subsequent evolution is however quite different from that
of incompressible plumes. As the fluid in the cap spins up, density fluctuations in
the vortex cores become negative (figure 8b). This is because the vortex pair resists
compression at the background adiabatic rate and thus, as it descends, quickly finds
itself less dense than the surroundings. Ultimately with further descent vortex core
densities get so low compared to the background mean value that the integrated
buoyancy force on the pair (most easily measured well after head detachment when
the identity of the pair can be clearly determined) is actually upward, an example of
what Parker (1991, see also Arendt 1993) has called dynamical buoyancy. What keeps
the pair propagating downward is the top-to-bottom pressure gradient induced across
it as it was spun up. This same dynamical pressure causes secondary head formation
within the stem (figures 8c and 8d). The sequence repeats itself, consecutively pinching
off vortex pairs each weaker than the previous one and travelling downward through
the layer slower than those ahead. Note that this scenario is slightly altered at high
Pr. For Prandtl numbers greater than ∼ 1 density fluctuations in the vortex core
remain positive. This is both because the vorticity of the pair is lower and because
the magnitude of the temperature fluctuations within the cap increase under the
conditions of low thermal dissipation. Despite these differences dynamic pressure
fluctuations behind the cap still initiate secondary head formation and successive
vortex pair detachment.

In figure 9 we trace the pinch development in time for two low Pr solutions,
Cases D and F1, by plotting, as a function of depth, the separation between peak
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Figure 8. Plume cap evolution following the motion. The first, second and third columns display
contours of vorticity ω, density fluctuations ρ′, and pressure fluctuations P ′ respectively. Positive
values are indicated with solid and negative values with dashed contours, and all contours for an
individual column are scaled by the minimum and maximum of the bottom row. Rows (a)–(e)
correspond to times t = 10.2, 19.5, 36.4, 55.3, and 76.0 in Case F1.
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Figure 9. Plume cap properties measured at the position of maximum vorticity for Cases D (filled
squares) and F1 (filled circles): (a) separation between peak cap vorticity values ∆xω , (b) density
perturbations ρ′ω , (c) vorticity ωω , and (d) potential vorticity Πω . Small letters in (a) correspond to
the rows of figure 8.

oppositely signed vorticity values in the starting plume cap ∆xω , and the values
of density perturbation ρ′ω , vorticity ωω , and potential vorticity Πω (Π = ω/ρ) at
the location of maximum cap vorticity. These cases have equal Péclet numbers but
differing Reynolds numbers. Since the fluid in Case D is more viscous than that in
Case F1 (see table 1), dynamic pressure fluctuations develop more slowly and the
onset of the pinch instability is delayed. In both cases the separation between peak
oppositely signed vorticity values initially increases as the head is formed and then
holds a nearly constant value so long as it remains attached to the stem (figure 9a).
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Figure 10. Plume cap depth (depth of peak vorticity value) as a function of time t for the
simulations indicated by the adjacent case identification. Missing points at shallow depths for high
Prandtl number Cases B2 and B3 are due to the cap vorticity not yet being in a well-defined vortex
pair. Solid lines plot the best linear fit from the end of head growth, through head detachment, to
the end of the run.

Once detachment occurs, the vortex pair is compressed and reduced in size. Below
a depth of about one density scale height and until head detachment occurs ρ′ω
decreases linearly, and density fluctuations at the location of peak vorticity (figure 9b)
are negative throughout most of the layer. After detachment compression of the pair
slows this decrease in ρ′ω , and in some deeper simulations a reversal can occur with
an increase of ρ′ω in the deepest layers.

Figure 9(c) plots the peak value of vorticity in the cap as a function of depth,
and while this quantity steadily increases, dissipation is evident in the decrease of
potential vorticity following the initial formation period (figure 9d). The vortex cap
structure is fundamentally a viscous one, forming as a result of viscous stress at
the plume tip. Lower viscosity results in a smaller initial cap diameter (figure 9a).
Additionally, compression with depth of an already formed vortex pair does not result
in an increase in the propagation velocity, as would be expected for two point vortices
whose separation decreases (e.g. Lamb 1945; Batchelor 1967). Instead, compression
of the extended pairs created by these plumes results in viscous dissipation, reduction
in the net circulation, and a constant velocity of pair propagation. Figure 10 plots the
position of the cap (depth of peak vorticity value) as a function of time. Superimposed
is the best linear fit to the points following cap formation. While there is evidence
for weak vortex pair acceleration at low Prandtl numbers and deceleration at high,
propagation velocities are remarkably constant with depth, scaling empirically with
Reynolds and Prandtl numbers as Re0.30/Pc0.23.

The cap dynamics can be summarized as a three-stage process: an initial conversion
of buoyancy to vorticity by viscous stresses, detachment and propagation due to con-
sequent dynamic pressure perturbations, and ultimate compression and dissipation.
Note that the pinch instability manifest in this process is not a varicose mode of the
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Figure 11. A series of horizontal vorticity images (light and dark being oppositely signed vorticity)
illustrating the sinuous stem flow instability for Case B1, here computed in a smaller 40×40 domain
with uniform gridding. Long-time evolution could thus be followed with vigorous flow extending
outward from the central plume region (see figure 15) at the cost of slightly lower than typical
resolution. The full vertical extent and 1/5 the horizontal extent (8 units) of the computational
domain is shown in each image.

stem shear flow, which probably grows slower than the sinuous mode to be discussed
in the next subsection. Instead it is an intrinsically nonlinear process requiring large
local dynamical pressure fluctuations produced by Reynolds stresses.

3.5. Sinuous instability of the stem shear flow

In addition to the pinch instability, these downflowing compressible plumes are subject
to a sinuous shear mode. Figure 11 displays a time series of images of the horizontal
vorticity for Case B1, here computed in a smaller 40 × 40 domain with uniform
gridding (1024× 1024 grid points, resolution ∆x = ∆z = 3.91× 10−2 throughout) and
subject to random initial background temperature perturbations of amplitude 10−3.
Kelvin–Helmholtz instability of the stem shear flow develops, its onset enhanced by
the background noise and occurring before the second pinch. The stem is disrupted,
with the long-term behaviour, beyond the time shown in figure 11, being a quasi-
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periodic wagging of the remaining stem portion and the shedding of alternately
opposite signed vortices at a depth of about 1.5–2.0Nρ.

To understand this instability more fully, we analyse the linear stability of the
nonlinear flow realized in our two-dimensional simulation. Fundamental difficulties
are associated with such an analysis. The underlying flow is non-parallel, time-
dependent, and subject to mean gradients in the direction of motion. We avoid these
difficulties by examining the local stability of the plume-stem shear flow at each
depth under the assumption that to lowest order the flow at that depth is steady
and parallel. Together with side boundary conditions of vanishing velocity such an
assumption implies that the unperturbed horizontal velocity must be taken to be
identically zero. The magnitude of the actual horizontal velocity in the region of the
two-dimensional simulation being considered thus provides a check on the accuracy
of this parallel-flow approximation. Measured in the nonlinear solution, as depicted
in the first image of figure 11, the maximum horizontal velocity is less than 10% of
the maximum vertical velocity for depths between z = 3 and 15, and less than 5%
of the maximum vertical velocity for depths between z = 6 and 14. Above z = 1.0,
however, maximum horizontal velocities are better than 25% of maximum vertical
velocities, even exceeding them in the very upper layers (z < 0.15), invalidating the
parallel-flow assumption. We thus restrict the linear stability analysis to that region
of the domain between z = 1 and z = 15, with the results most useful below z ≈ 5.

We solve the linearized equations by Newton–Raphson–Kantorovich iteration
(Cash & Moore 1980) for a series of one-dimensional stability problems, where
for each the background state is taken from the two-dimensional simulation at a
particular depth. The perturbation eigenfunctions are strongly confined to the plume
shear layer located far from the influence of the domain sidewalls. The vanishing
velocity boundary conditions are thus a good approximation to free-stream condi-
tions in which perturbations decay exponentially with distance. For our local analysis,
layer by layer, to be meaningful the vertical disturbance wavelength should be small
compared to the depth over which the background varies. We find that this condition
is satistified in our study of Case B1 for depths greater than about z = 2.5. At such
depths the wavelength of the fastest growing mode is shorter than both the density
and pressure scale heights (figure 13b). Note that treating each depth separately also
requires that gravity be ignored in obtaining the perturbation solution. Otherwise
spuriously growing modes are found that extract energy from the mean state even in
the absence of shear. Our analysis thus corresponds to examining the linear stability
of an unbounded two-dimensional viscous compressible jet, where the jet profile is
given by the nonlinear thermal-plume solution at each depth.

The results, when applied to the nonlinear solution illustrated by the first image
of figure 11, are summarized by figures 12 and 13. Figure 12 plots the growth rate
βi, phase speed vp = βr/α, and group velocity vg = ∂βr/∂α of the linear modes as
a function of vertical wavenumber α at three depths. These curves are similar to
those obtained for the sinuous modes of more idealized jets (cf. Drazin & Reid
1981) with the exception that the phase and group velocities become negative at
very low values of α. This can be understood, remembering that the velocity profiles
studied here have a negative (upflowing) region surrounding the downflowing core.
At low vertical wavenumbers the eigenfunctions peak in and sample predominantly
this outer region. Figure 13 plots βi, vp, vg , and the disturbance wavelength λ for the
fastest growing mode at each depth. While varying slowly with depth the wavelength
of the fastest growing mode has a value between about 2.1 and 2.7. This is in good
qualitative agreement with the wavelength apparent at the onset of instability in the



Compressible plume dynamics and stability 143

(a)

(b)

(c)

0.4

0.3

0.2

0.1

0

βi

0.4

0.2

0

–0.2

vp

0.4

0.2

0

–0.2

vg

0.6

0.8

0 1 2 3 4 5 6 7
α

Figure 12. Linear stability properties of the stem shear flow illustrated by the first image of figure 11
at three depths: z = 15 (solid curve), z = 10 (dashed curve), and z = 5 (dotted curve): (a) the growth
rate βi, (b) the phase speed vp, and (c) the group velocity vg as a function of vertical wavenumber α.

two-dimensional simulation, as illustrated by the second panel of figure 11. Also in
good agreement is the fact that the group velocity of the fastest growing mode in
the linear problem is approximately equal, at each depth, to the value of the vertical
velocity at the inflection point of the nonlinear flow. Additionally, the phase speed of
the linear disturbance is less than the group velocity implying an apparent upward
propagation of the disturbance phase relative to the flow. This is visually apparent
in animated sequences of images of the nonlinear solution. The sinuous instability
manifest in the two-dimensional nonlinear simulations thus appears to be a convective
linear shear-mode of the underlying stem flow.

An attempt to understand the depth to which the plume stem flow remains stable
at late times by such an analysis is a bit more problematic. As already mentioned,
following the instability depicted by figure 11, a quasi-periodic shedding of alternately
signed vorticity from an apparently stable truncated stem occurs at depth of z = 5–
10. Considering the convective nature of the instability discussed above, one might
suggest a relevant depth scale of d = vg/βi. This is the depth to which the instability
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Figure 13. Linear stability properties of the fastest growing mode as a function of depth z in the
stem shear flow illustrated by the first image of figure 11: (a) the growth rate βi, (b) the vertical
wavelength, (c) the phase speed vp, and (d) the group velocity vg . Also plotted in (b) are the density
scale height Hρ (dotted curve), the pressure scale height HP (dashed curve), and the distance vg/βi
(thin solid curve). Apparent discontinuities with depth in λ, vp and vg reflect the discrete set of
wavenumbers chosen for the linear stability calculation.

is convected by the flow before growing appreciably. As illustrated by the thin solid
curve in figure 13(b), the value of vg/βi for this case is approximately 1.5 over much
of the domain. The discrepancy between this value and the apparent stability of the
nonlinear solution to five times that depth is perhaps not surprising given that the
actual flow is nonlinear, and that both the local analysis and parallel-flow assumptions
of the linear problem break down at shallow depths.
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Figure 14. A series of horizontal vorticity images (light and dark being oppositely signed vorticity)
illustrating the interaction and merger of two identical compressible starting plumes. One half the
horizontal extent (10 units) and the full vertical extent of the computational domain is shown.

4. Multiple plumes, upward-directed plumes, and more fully developed
flows

In this section we briefly contrast the single downflowing plume discussed above
with two comparison cases, one in which two identical starting plumes are driven
from the upper boundary, and another in which a single upflow plume is driven from
the lower boundary.

A typical two-plume solution is illustrated in figure 14 with a series of images
of the horizontal vorticity. The plumes are identical, are started simultaneously, and
as in single-plume cases descend through an adiabatic background. Early evolution
illustrates an attraction between plume stems and a repulsion between their heads.
The attraction results from negative pressure fluctuations between the plumes, a
consequence of the increased flow velocity there as compared to that outside. Head
repulsion occurs in response to convergent horizontal flow and consequent positive
pressure fluctuations induced between the two neighbouring and oppositely signed
vortices of the two plume caps. Destabilization and rapid detachment of the caps
then occurs, followed by merger of the two stems. Subsequent evolution, beyond that
illustrated in figure 14, entails consolidation of a single plume stem below a depth
of about z = 10, new single-cap formation, and the development of the single-plume
instabilities previously discussed.

This example of plume interaction is a rather special case. The plumes are iden-
tical, co-temporal, and two-dimensional. These, probably most significantly the two-
dimensionality of the flow, clearly restrict the interactions possible, and further study
relaxing such restrictions is essential. In particular, it is important to investigate
whether plume–plume interactions serve to destabilize the flow, as suggested here, or
whether entwining of individual plumes in three dimensions can render them more
robust and thus more likely to coherently descend to greater depths. It is clear that
the outcome probably depends on the relative signs of the vertical vorticity of the
plumes. What is less clear is the role of compressibility in such interactions and its
manifestation in secondary instability.

Figure 15 contrasts the evolved flow of an upflowing and downflowing compressible
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Figure 15. Instantaneous horizontal vorticity for two separate experiments, showing (a) the same
downflow plume as that in figure 11 at a later time, t = 329, and (b) an upflow plume of comparable
strength in the same adiabatic background. One half of the horizontal extent (20 units) and the full
vertical extent of the computational domain is shown.

plume. The downflow plume depicted is the same as that in figure 11 at a later
time (t = 329). The plumes are of comparable strength and both backgrounds are
adiabatically stratified. Flow development in the two cases is quite distinct. The
upflow plume is not subject to the pinch instability. Dynamic pressure fluctuations
behind the head are weak due to the expansion of the rising vortex pair. Additionally,
if the background is quiescent no sinuous instability is observed, since expansion
tends to smooth fluctuations. The sinuous mode can however be realized by inducing
asymmetries in the flow with low-amplitude random temperature fluctuations in
the initial conditions. For both cases illustrated by figure 15 such fluctuations of
amplitude 10−3 were introduced. The upflowing stem flow is consequently unstable
with height and vortex pairs are shed into the domain above. The pairs expand and
slow as they rise, with successive pairs travelling faster, penetrating and disrupting the
previous one as in the familiar leap-frogging of two vortex rings seen in laboratory
experiments (Yamada & Matsui 1978). As a result the fluid, rather than moving out
of the plume region as a series of detached vortex pairs, as seen in the compressible
downflowing plume, is wrapped back into the upflowing plume region. The whole
region expands with height within a roughly conically shaped envelope reminiscent of
incompressible turbulent plumes. Note that the region of significant vortex interaction
for the downflowing plume of figure 15 (between depth of z = 15 and 30) reflects the
ensemble of vorticity shed by the initial onset of sinuous stem instability (figure 11)
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not the interaction of individual vortex pairs. Individual vortex pairs shed by the
downflowing plume prior or subsequent to that event leave the plume region as
entities.

These results suggest a fundamental distinction between the dynamics of upflowing
and downflowing plumes in a stratified medium. A downflowing plume in such a set-
ting sheds vorticity which leaves the plume region, descends through the medium, and
remains compact due to compression with depth. Interactions between compact vor-
tex pairs shows little large-scale organization. An upflowing plume, by contrast, sheds
vortex pairs which expand and slow as they rise. Subsequent interactions tend to wrap
the vorticity back into the larger plume structure. These dynamical differences suggest
that while an entrainment hypothesis may prove useful in describing compressible
upflowing plumes in a stratified medium, as it already has for incompressible plumes
in a variety of settings (e.g. Turner 1986 and references therein), entrainment may
be an inappropriate description of compressible downflowing plume behaviour even
under more turbulent flow conditions. The dynamics of compressible downflowing
plumes may be better described by the shedding of and interaction between detached
vorticity, with the plumes quickly losing their identity with depth. Three-dimensional
turbulent compressible plume studies are needed to further address this issue, and
such studies are in progress.

5. Conclusion
We have conducted detailed studies of fully compressible two-dimensional thermal

starting plumes. When computed at extremely high numerical resolution, such plumes
are subject to vigorous secondary instabilities. Dynamical pressure fluctuations play
an important role leading to the detachment of compact vortex pairs. These pairs
leave the plume region with only limited interaction due to compression in the
presence of significant mean stratification. In this section we reconnect this work with
its astrophysical motivation, discussing possible implications.

Solar and stellar envelope convection is driven by enormous photospheric radia-
tive losses. Granulation, the manifestation of such convection on the Sun, is surface
driven and dominated by new downflow plume formation (Rast 1995, 1998). The
work presented in this paper suggests that these downflows are unlikely to be co-
herent below a few scale heights depth. Compressible downflow plume dynamics is
sufficiently different from that of incompressible plume or compressible upflowing
plume dynamics that previous estimates of plume size, spacing, and strength at the
base of the solar convection zone which depend on simple plume models are likely to
be in error. The error results from the assumptions of hydrostatic pressure distribution
and velocity proportional entrainment both of which are called into question by our
studies. Rather than coherent downflows to the base of the solar convection zone,
our studies suggest a surface layer of convection, the dynamics of which is dominated
by radiative loss, new downflow plume formation, and plume disruption, overlying
a region of perhaps larger scale nearly Boussinesq convection. Understanding an
entire shell of highly stratified convection (in the Sun spanning 2 × 105 km with a
density scale height in the surface layers of about 350 km) encompassing both these
regimes promises great challenge. While computation of the entire layer at resolutions
which also allow the complex dynamics of the near surface layers is currently beyond
capability, it may be possible to use what is learned about the dynamics, stability, and
interaction of individual plumes in the surface layers to provide a dynamical upper
boundary condition on a deeper less stratified domain.
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Compressible plume studies should be, and currently are being, extended to three
dimensions. While it is difficult to imagine how three-dimensionalization would serve
to stabilize the flow, it is likely that multiple plume interactions are significantly
influenced by the additional spatial freedom. In particular, it is important to deter-
mine whether multiple plume coalescence can result in deeper downflow coherence
or whether the resulting plume is also then disrupted in short order by secondary
instability. Study of thermal plumes in a more realistic setting than that of an adi-
abatic background is also desirable. It is possible that thermal-plume dynamics is
fundamentally different from downflow dynamics in other convecting environments.
While we have argued elsewhere (Rast 1995, 1998) that solar granulation, and by
analogy convection in the photospheric layers of other stars, can best be understood
as the continuous formation of new downflow plumes in response to locally enhanced
surface cooling, unequivocal demonstration of the importance of the dynamics dis-
cussed in this paper to those settings awaits a significant increase in computational
capabilities which would allow for comparable resolution to that achieved here under
more realistic flow conditions.

Special thanks to S. Arendt, T. Bogdan, N. Brummell, F. Cattaneo, P. Charbonneau,
T. Emonet, K. Julien, K. MacGregor, S. Tobias, and J. Werne.
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